Search results for "Mammalian brain"
showing 6 items of 6 documents
Mast cells' involvement in inflammation pathways linked to depression: evidence in mastocytosis
2016
International audience; Converging sources of evidence point to a role for inflammation in the development of depression, fatigue and cognitive dysfunction. More precisely, the tryptophan (TRP) catabolism is thought to play a major role in inflammation-induced depression. Mastocytosis is a rare disease in which chronic symptoms, including depression, are related to mast cell accumulation and activation. Our objectives were to study the correlations between neuropsychiatric features and the TRP catabolism pathway in mastocytosis in order to demonstrate mast cells' potential involvement in inflammation-induced depression. Fifty-four patients with mastocytosis and a mean age of 50.1 years were…
Prox1 Is Required for Oligodendrocyte Cell Identity in Adult Neural Stem Cells of the Subventricular Zone
2016
Abstract Adult neural stem cells with the ability to generate neurons and glia cells are active throughout life in both the dentate gyrus (DG) and the subventricular zone (SVZ). Differentiation of adult neural stem cells is induced by cell fate determinants like the transcription factor Prox1. Evidence has been provided for a function of Prox1 as an inducer of neuronal differentiation within the DG. We now show that within the SVZ Prox1 induces differentiation into oligodendrocytes. Moreover, we find that loss of Prox1 expression in vivo reduces cell migration into the corpus callosum, where the few Prox1 deficient SVZ-derived remaining cells fail to differentiate into oligodendrocytes. Thu…
Investigating the use of primary adult subventricular zone neural precursor cells for neuronal replacement therapies
2002
With the relatively recent discovery that neurogenesis persists throughout life in restricted regions of the adult mammalian brain, including those of human beings, there has been great interest in the use of adult-derived neural stem cells for neuronal replacement. There are many great hurdles that must be overcome in order for such replacement strategies to succeed. In this review, we outline some of these hurdles and discuss recent experiments that investigate the potential of using neural precursor cells found in the subventricular zone of the adult brain for brain repair.
Intraspezifische Unterschiede der relativen Hirngrösse beim Löwen (Panthera leo L.)
1971
Different stages of brain evolution expressed by the allometric relation of3√ brain capacity and basal length of the skull are shown to be existent in the speciesPanthera leo. Whereas Asiatic lions obviously have the same level of brain size as leopards (Panthera pardus), African lions have higher brain capacities. A third level seems to be represented by the upper pleistocene American lion,Panthera leo atrox. These results permit us to reject some conceptions ofHerre andRohrs13 concerning the quantitative expression of mammalian brain evolution.
Engineering of Adult Neurogenesis and Gliogenesis
2016
Neural stem/progenitor cells (NSPCs) retain their ability to generate newborn neurons throughout life in the mammalian brain. Here, we describe how recently developed virus- and transgenesis-based techniques will help us (1) to understand the functional effects of neurogenesis in health and disease, (2) to design novel approaches to harness the potential for NSPC-associated endogenous repair, and (3) to induce the generation of neurons outside the main neurogenic niches in the adult brain.
Phylogenetic variation in cortical layer II immature neuron reservoir of mammals
2020
The adult mammalian brain is mainly composed of mature neurons. A limited amount of stem cell-driven neurogenesis persists in postnatal life and is reduced in large-brained species. Another source of immature neurons in adult brains is cortical layer II. These cortical immature neurons (cINs) retain developmentally undifferentiated states in adulthood, though they are generated before birth. Here, the occurrence, distribution and cellular features of cINs were systematically studied in 12 diverse mammalian species spanning from small-lissencephalic to large-gyrencephalic brains. In spite of well-preserved morphological and molecular features, the distribution of cINs was highly heterogeneou…